[Leetcode] Maximum Score from Performing Multiplication Operations(Medium)
LeetCode 1770 - Maximum Score from Performing Multiplication Operations
You are given two integer arrays nums
and multipliers
of size n
and m
respectively, where n >= m
. The arrays are 1-indexed.
You begin with a score of 0
. You want to perform exactly m
operations. On the ith
operation (1-indexed), you will:
- Choose one integer
x
from either the start or the end of the arraynums
. - Add
multipliers[i] *
x` to your score. - Remove x from the array
nums
. Return the maximum score after performing m operations. example
Input: nums = [1,2,3], multipliers = [3,2,1]
Output: 14
Explanation: An optimal solution is as follows:
- Choose from the end, [1,2,3], adding 3 * 3 = 9 to the score.
- Choose from the end, [1,2], adding 2 * 2 = 4 to the score.
- Choose from the end, [1], adding 1 * 1 = 1 to the score.
The total score is 9 + 4 + 1 = 14.
Input: nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6]
Output: 102
Explanation: An optimal solution is as follows:
- Choose from the start, [-5,-3,-3,-2,7,1], adding -5 * -10 = 50 to the score.
- Choose from the start, [-3,-3,-2,7,1], adding -3 * -5 = 15 to the score.
- Choose from the start, [-3,-2,7,1], adding -3 * 3 = -9 to the score.
- Choose from the end, [-2,7,1], adding 1 * 4 = 4 to the score.
- Choose from the end, [-2,7], adding 7 * 6 = 42 to the score.
The total score is 50 + 15 - 9 + 4 + 42 = 102.
How can we solve this problem?
這題最主要的重點是對於每個multipliers[i]
,它只能挑選最左邊或者最右邊的值。所有,我們需要知道multipliers[i]
拿最左邊的值最後的結果比較大,還是拿最右邊後的結果比較大。為了避免重複計算而超時,所以我們需要使用dp
來幫助我們記錄當前最優解。注:因multipliers最多為m個,所有最多只能從nums拿m個數字
- dp 定義: dp[i][j], 從前面取了
i
個,以及後面取了j
個,但是因為j很大(n-1),所以我們透過計算當前計算的multipliers
的第k
個來表示(n - j - i + 1
)。當前的multipliers
是k
。 - dp 初始條件 : init 為 INT_MIN
Solution:
class Solution {
vector<vector<int>> dp;
public:
int maximumScore(vector<int>& nums, vector<int>& multipliers) {
//n >= m
//socre : 0
//m operations
//[3,2,1]
int m = multipliers.size();
int n = nums.size();
dp = vector<vector<int>>(m+1,vector<int>(m+1,INT_MIN));
return solution(nums,multipliers,0,n-1,n,m);
}
int solution(vector<int>& nums, vector<int>& multipliers,int i,int j,int n,int m){
int currentMul = n - (j - i + 1); //the rest of size of the sub-array is the index of current multipliers
if(currentMul == m) return 0;
//current maxvalue = choose first or choose end?
if(dp[i][currentMul] != INT_MIN) return dp[i][currentMul];
//choose the front val
return dp[i][currentMul] =
max(
(nums[i] * multipliers[currentMul]) + solution(nums,multipliers,i+1,j,n,m),// take left
(nums[j] * multipliers[currentMul]) + solution(nums,multipliers,i,j-1,n,m) //take right
);
}
};