[Leetcode] Trim a Binary Search Tree(Medium)

LeetCode 669 - Trim a Binary Search Tree

Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high]. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node’s descendant should remain a descendant). It can be proven that there is a unique answer.

Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.

example

Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]

How can we solve this problem?

這題就是要我們將一顆BST的少於low的部分以及大於heigh的部分移除。這題打算使用遞歸來解決。我們只要將比low小的Node的右子樹接到他的父節點,並取代比low還小的Node,而比heigh大的Node的左子樹接到他的父節點,並取代比heigh還大的Node即可。

Solution:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        //space : O(tree node size for all nodes value are between low and height)
        //time : O(tree node size for all nodes)
        return TrimBST(root,low,high);
    }
    
    
    TreeNode* TrimBST(TreeNode* root,int low,int height){
        if(!root) return nullptr;
        //if the root value is less than height ,go right sub-tree 
        //if the root value is greater than low ,go left sub-tree
        if(root->val < low){
            // root->left = nullptr;
            return TrimBST(root->right,low,height);
        }else if(root->val > height){
            // root->right = nullptr;
            return TrimBST(root->left,low,height);
        }
        
        //left
        root->left = TrimBST(root->left,low,height);
        //right
        root->right = TrimBST(root->right,low,height);
        // cout << root->val << "\n";
        return root;
    }
};